
Introduction to Gameboy hardware and software
development

Jean-Michel FRIEDT, April 2, 2001

1 Hardware aspects

Connecting an EEPROM just for executing a program is straight forward as the Gameboy offers,
with TTL levels, a 8 bit wide data bus, a 16 bit wide address bus and the two usual control signals
RD# and WR#.

The address range allocated to the ROM is from 0000 to 7FFF: it is thus possible to the address
line 15 as a Chip Select signal for the ROM (CS#). The signal for reading RD# of the Gameboy
is connected to the pin OE# of the ROM (so that it defines the value on the data bus when being
read from).

In order to allow, in addition to executing a program from ROM, to control digital output lines
as well as read digital inputs from sensors connected to the Gameboy, one must add an address
decoder (represented by the 74138 on the schematic in figure 2). Indeed, the communication with
the world requires adding components – a latch for outputs (74574) and a 3-state bus-divider
(74245) for inputs – which must be selectable independently from the ROM.

+5V WR#
RD#

GNDD0−D7@0−@15

Figure 1: Gameboys connector, as seen from top of the console, the screen facing in the opposite
direction from the viewer. The pins to the two ends of the connectir (+5V and GND) are correctly
indicated, and the address bus (16 bits) and data bus (8 bits) are one next to the other.

74574
CK

74245
E#

CS#
@15

EEPROM
(2864)
28256

RD#

WR#

LEDs

HC11

G1=@15
G2A=@14

A

C=@13

B 74138
G2B=GND

@=A000

G
B

 connector

data

@13−@15

OE#

@0−@14
@0−@15

16 15

3

8

8

IOW#

IOR#
Y6

Y5

Figure 2: Schematic of a Gameboy cartridge

The address range allocated to external RAM (on the cartridge) starts at A000 (and finishes

1

at BFFF). We will use this address as a communication port between the Gameboy and the world.
The ROM is not activated when this address is used as address bit 15 is then at a high level (as
it is for all calls above address 8000 – remember that the ROM space extends up to 7FFF). Two
possibilities are available: accessing to the world in input or output modes. During an output
(writing), WR# is low and the Y5 output of the 74138 is triggered. During an input (reading),
RD# is low and the Y6 output of the 74138 is triggered. One just has to connect these two signals,
Y5 and Y6, to the trigger signals of the components used to isolate the Gameboy from the world
(CK for the 74574, E# for the 74245).

2 Software aspects

At least two Gameboy development tools are available for Linux: rgbds is an assembler, while gbdk
is a C compiler. These tools are more convenient than others Z80 compilers as they aumatically
generate a header required at the beginning of the ROM for the program to be executed by the
Gameboy (this header includes a checksum which must be correct, otherwise the ROM is refused
when the Gameboy is switched on).

These two tools were used successfully for executing a program from ROM and to communicate
with the world using the dedicated ports.

The assembly program is copied from the galp tutorial, which is an introduction to the rgbds
assembler, and slightly modified at the end of the printing routine to access to the output port.

; jmfriedt, 5/02/01

INCLUDE "gbhw.inc"

INCLUDE "ibmpc1.inc"

SECTION "Org $100",HOME[$100]

nop

jp begin

ROM_HEADER ROM_NOMBC, ROM_SIZE_32KBYTE, RAM_SIZE_2KBYTE

INCLUDE "memory.asm"

TileData:

chr_IBMPC1 1,8

begin:

di

ld sp,$ffff

call StopLCD

ld a,$e4

ld [rBGP],a ; Setup the default background palette

ld a,0

ld [rSCX],a

ld [rSCY],a

ld hl,TileData

ld de,$8000

ld bc,8*256 ; length (8 bytes per tile) x (256 tiles)

call mem_CopyMono ; Copy tile data to memory

ld a,$20 ; Clear tile map memory

ld hl,$9800

ld bc,SCRN_VX_B * SCRN_VY_B

call mem_Set

ld hl,Title ; Draw title

ld de,$9800+3+(SCRN_VY_B*7)

ld bc,13

call mem_Copy

; Now we turn on the LCD display to view the results!

ld a,LCDCF_ON|LCDCF_BG8000|LCDCF_BG9800|LCDCF_BGON|LCDCF_OBJ16|LCDCF_OBJOFF

ld [rLCDC],a ; Turn screen on

ld a,$ff

wait:

dec a

ld [$a000],a ; <- doit permettre d’ecrirer ff en RAM a000 <- LEDs

ld hl,$ffff

bll:

dec hl

jp NZ,bll

jp wait

Title:

DB "Hello World !"

; *** Turn off the LCD display ***

StopLCD:

ld a,[rLCDC]

rlca ; Put the high bit of LCDC into the Carry flag

ret nc ; Screen is off already. Exit.

; Loop until we are in VBlank

.wait:

ld a,[rLY]

cp 145 ; Is display on scan line 145 yet?

jr nz,.wait ; no, keep waiting

; Turn off the LCD

ld a,[rLCDC]

res 7,a ; Reset bit 7 of LCDC

ld [rLCDC],a

ret

;* End of File *

The C program is easier to understand at first sight. gbdk offers a lot of functions, including
graphics functions, and is thus easy to start with. However, the final binary code generated on
such a simple example as the one presented here is 4 times larger (nearly 8 KB) than its equivalent
written in assembly language.

/* Sample Program to demonstrate the drawing functions in GBDK */

/* Jon Fuge jonny@q-continuum.demon.co.uk (modified by jmfriedt) */

/* ../../bin/lcc -Wa-l -Wl-m -Wl-j -DUSE_SFR_FOR_REG -o jm.gb jm.c */

#include <gb/gb.h>

// #include <stdio.h>

#include <gb/drawing.h>

void main(void)

{UBYTE *c,cpt,inp;int i;

c=0xA000;cpt=0; // address of pointer <- write to @ 0xA000

gotogxy(2,2);gprintf("hello world");

gotogxy(2,4);gprintf("jmfriedt");

/* Draw two circles, a line, and two boxes in different drawing modes */

2

color(LTGREY,WHITE,SOLID);

circle(140,20,15,M_FILL);

color(BLACK,WHITE,SOLID);

circle(140,20,10,M_NOFILL);

color(DKGREY,WHITE,XOR);

circle(120,40,30,M_FILL);

line(0,0,159,143);

color(BLACK,LTGREY,SOLID);

box(0,130,40,143,M_NOFILL);

box(50,130,90,143,M_FILL);

while (1) {cpt++;*c=cpt;for (i=0;i<6500;i++) {}

inp=*c;gotogxy(2,6);gprintf("%d",inp);}

// use different vars for

} // counter and output pointer @

A useful tool, at least for the graphics display part, is an emulator. Two such programs are
available under Linux: vgb (binary version only) and xgnuboy. The screenshots of the two latter
programs are visible on figure 3.

Figure 3: Sortie d’écran de l’émulateur vgb

3 Communication with a microcontroller

Development on the Gameboy itself is a painful process: plug EEPROM into 68HC11 programmer,
program EEPROM, plug EEPROM on Gameboy extension card, test EEPROM, check what part
of the program fails, program EEPROM again ... It thus seemed much easier to connect a more
classical microcontroller (which include RS232 communication, A/D converters, several I/O ports
...) to the Gameboy, and have a simple and standard program on the Gameboy side just for
displaying data while the complex operations are being done on the microcontroller. Because the
microcontroller (in our case the 68HC11F1) has a bootstrap mode (i.e. can be programmed from
its serial port), development is easy and quick.

We thus added to the Gameboy extension card a 74245 tri-state bus transceiver so that the
Gameboy can not only send data and orders to the microcontroller (as demonstrated by out ability
to power on and off LEDs connected to the 74574) but also read data from the microcontroller.
This additional component’s power consumption seems to go above the limit power the Gameboy
can supply, and external power supply (+5V) was required for it.

A simple protocol was developed for one-way communication between the microcontroller and
the Gameboy: every time the Gameboy seeks a datum from the microcontroller, it reads from the
74245 the value stored on the output (A) port of the microcontroller. As the Chip Select signal
of the 74245 (as defined at the output of the address decoder on the Gameboy extension card)
is also connected the the 68HC11 IRQ# line, the microcontroller knows a datum has just been
read by the Gameboy: it starts a new conversion on its analog to digital converter and stored
the new result on port A (this process must take less time than the delay between two Gameboy
data requests, which in our case is about half a second) so that the new value is ready when the
Gameboy will next request it. Obviouly, using one of the digital input ports on the 68HC11 side,
more complex commands could be sent from the Gameboy to the 68HC11 by connecting it to the

3

74574 on the extension card (for example, using output-only port B of the 68HC11 for sending
data to the Gameboy and using port A in read-mode for getting commands).

An example of such a setup is given bellow: notice that the curves read on the serial port of
the 68HC11 and displayed on the Gameboy are similar. The 68HC11 was reading the voltage on
the middle pin of a potentiometer connected to one of its A/D converters, and sending the result
simultaneously to the Gameboy and on the serial port (for reading by a PC).

130

140

150

160

170

180

190

200

210

220

0 50 100 150 200 250 300 350 400

line 1

Figure 4: Connecting the Gameboy to a 68HC11(F1) microcontroller: notice that the curve to
the right (as read on the HC11’s serial port by a PC) and the curve displayed on the Gameboy
screen (left: same data transfered from the microcontroller to the Gameboy) are similar.

Using a microcontroller as an extension of the Gameboy greatly increases the capabilities of
this project, as all the usual functionalities of microcontrollers (timer, A/D converters, serial
communication protocols, interrupts ...) are available to the Gameboy which otherwise does not
allow access to these low level hardware functionalities.

Figure 5: Rear views of the Gameboy extension card: notice the LEDs array for testing the output
port, the address decoder (added to the card using wires) and the 28C256 EEPROM holding the
program to be executed (also works fine with a 28C64 EEPROM).

A more efficient communication protocol could be developed using an intermediate FIFO mem-

4

ory (AM7202A for example). Indeed, in that case, the microcontroler (in our case a 68HC11F1 or
a TMPZ84) writes data to be displayed on the screen of the Gameboy to the FIFO. The Gameboy
waits for the data until half the memory is full (HF# signal enabled). At this moment, the Game-
boy denies the access to the memory to the microcontroler, while it quickly reads the content of
the FIFO until it is emptied (pin EF# activated meaning the FIFO is empty). The Gameboy
then releases access to the FIFO to the microcontroler, plots the data it just read and waits for a
new time series.

FIFO Gameboy

device
under
test

micro−controler
(HC11/Z80)

RS232 timer
data

W#

IRQ
data

R#

HF#

EF#FF#

FIFO access deny

PC

Figure 6: Schematic for the communication between a microcontroler and the Gameboy

5

	Hardware aspects
	Software aspects
	Communication with a microcontroller

