
Introduction to the Motorola 68HC908JB8
Jean-Michel FRIEDT, December 2001-October 7, 2004

1 Introduction

We decided to look at the 68HC908JB8 microcontroller from Motorola following interest in the development of USB enabled
intruments. The 68HC908JB8 does not require any external programmer since it is based on flash memory, provides a
convenient communication tool in ROM called the Monitor mode, includes one USB peripheral but no UART. It is available
both is easy to handle DIP package and low volume SOIC package.

All development were done under Linux (kernel 2.2.19, although no kernel specific functions were used) using gcc 2.95.2
for generating the binaries running on the PC and as6808 v.03.10 provided by asxxxx v.3.10 (November 2001) for the
programs running on the microcontroller.

The following script was used for generating the ASCII file containing the hexadecimal codes of the program to be trans-
ferred from the PC to the microcontroller:

#!/usr/bin/tcsh

if ($# == 0) then # requires at least 1 argument

echo $0 "filename[.asm]"

else

set nom=$1 # remove extension from name (if given)

if (‘echo $1 | grep \.‘ != "") then

set nom=‘echo $1 | cut -d\. -f1‘

endif

echo $nom "->" $nom".out" # input foo.asm outputs as foo.out

./as6808 -o $nom.asm

grep ^T $nom.rel | cut -c9-80 > $nom.out # keep only data

\rm $nom.rel

endif

asm: script for compiling a text file containing the assembly program to an ASCII file containing the hexadecimal opcodes.

Once the .out ASCII file containing the hexadecimal opcodes is generated, the board is switched on and the program is
uploaded using ./hc08 file.out where hc08 is a program described later developed for the purpose of learning how this
microcontroller works. But first we must look at the hardware before being able to test our first program.

2 Electronic circuit

The electronic circuit around the 68HC908JB8 is quite simple and highly inspired from the development circuit provided
by Motorola. It mainly consists of the oscillator circuit, pull up resistors to the interrupt (IRQ#) and PTA0 lines, and the
reset switch. Since the PTA0 line, which is used for communication in the monitor mode with the PC through the MAX232,
includes its own internal pull up resistor, adaptation between the TTL (5 V) logic of the MAX232 and the 3.3 V logic of
the 68HC908JB8 is quite simple: a diode turned towards the highest voltage is enough. Indeed, if the MAX232 outputs a
low level (pin grounded), the current can flow from the microcontroller to the MAX232 and PTA0 senses a ground level. If
on the other hand the MAX232 pin is high (+5 V), the diode is blocking the current flow from the microcontroller to the
MAX232 and the PTA0 pin senses a high (+3.3 V) level thanks to its pull up resistor.

+5V PTD0/1

OSC1

OSC2

+5V

RST#

IRQ#+5V

USB D+

USB D−

68
H

C
90

8J
B

8

PTA0

3.3V reg

PTC0

PTA7
10

9

MAX232 (12)
MAX232 (11)

USB (2)

USB(3)2

3

20

11

4

8

9

19

12

10

6

D
IP

 2
0

Simple circuit for communicating with the 68HC908JB8 microcontroller. The green lines are optional connections between the

microcontroller and the MAX232 in order to use a second software emulated UART. The red numbers are the pin numbers for a 20

pin DIP package.

3 The Monitor mode

First, we must find out how to program the 68HC908 and get familiar with its monitor feature. To this date (December
2001-January 2002) one program exists for programming two of the 68HC908 family: spgmr08, version 0.9. However, this
software aims at integrating a lot of features in one bulky executable, including a GUI, which is not what I was looking for.
And anyway, understanding every steps of the programming part of the microcontroller is interesting. So after building a
basic board including a CPU, a MAX232 RS232 level converter and a few passive components as described earlier, I started
putting together a few routines for getting familiar with the monitor mode.

Two tricks appeared:
- when sending the 8 security bytes at the beginning of the transmission, a delay between the received echo and the new

1

transmission is required
- the echo does not include one but two characters: the direct connexion through the protection diode of the RS232 trans-
mission line with its reception line, followed by the echoed character by the microcontroller.

The monitor mode is otherwise implemented as described in section 10 of the Technical Data book. It allows reading
and writing individual bytes or sequentially to any place in the microcontroller’s memory, including to the I/O ports which
makes testing simple circuits very easy. As a first example, let us make an LED connected to port D pin 0/1 (on the 20 pin
DIP package) blink under computer control. We here write to the port D register from the PC: no program is running on
the microcontroller itself (apart from the Monitor routine provided in ROM).

/* All examples have been derived from miniterm.c */

/* Don’t forget to give the appropriate serial ports the right permissions */

/* (e. g.: chmod a+rw /dev/ttyS0) */

#include "rs232.h"

extern struct termios oldtio,newtio;

int init_rs232(int BAUDRATE)

{int fd;

fd=open(HC11DEVICE, O_RDWR | O_NOCTTY);

if (fd <0) {perror(HC11DEVICE); exit(-1); }

tcgetattr(fd,&oldtio); /* save current serial port settings */

bzero(&newtio, sizeof(newtio)); /* clear struct for new port settings */

// newtio.c_cflag = BAUDRATE | CRTSCTS | CS8 | CLOCAL | CREAD;

newtio.c_cflag = BAUDRATE | CS8 | CLOCAL | CREAD; /* _no_ CRTSCTS */

newtio.c_iflag = IGNPAR; // | ICRNL |IXON;

newtio.c_oflag = IGNPAR; // ONOCR|ONLRET|OLCUC;

// newtio.c_lflag = ICANON;

// newtio.c_cc[VINTR] = 0; /* Ctrl-c */

// newtio.c_cc[VQUIT] = 0; /* Ctrl-\ */

// newtio.c_cc[VERASE] = 0; /* del */

// newtio.c_cc[VKILL] = 0; /* @ */

// newtio.c_cc[VEOF] = 4; /* Ctrl-d */

newtio.c_cc[VTIME] = 0; /* inter-character timer unused */

newtio.c_cc[VMIN] = 1; /* blocking read until 1 character arrives */

// newtio.c_cc[VSWTC] = 0; /* ’\0’ */

// newtio.c_cc[VSTART] = 0; /* Ctrl-q */

// newtio.c_cc[VSTOP] = 0; /* Ctrl-s */

// newtio.c_cc[VSUSP] = 0; /* Ctrl-z */

// newtio.c_cc[VEOL] = 0; /* ’\0’ */

// newtio.c_cc[VREPRINT] = 0; /* Ctrl-r */

// newtio.c_cc[VDISCARD] = 0; /* Ctrl-u */

// newtio.c_cc[VWERASE] = 0; /* Ctrl-w */

// newtio.c_cc[VLNEXT] = 0; /* Ctrl-v */

// newtio.c_cc[VEOL2] = 0; /* ’\0’ */

tcflush(fd, TCIFLUSH);tcsetattr(fd,TCSANOW,&newtio);

// printf("RS232 Initialization done\n");

return(fd);

}

void sendcmd(int fd,char *buf)

{unsigned int i,j;

if((write(fd,buf,strlen(buf)))<strlen(buf))

{printf("\n No connection...\n");exit(-1);}

for (j=0;j<5;j++) for (i=0;i<3993768;i++) {}

/* usleep(attente); */

}

void free_rs232(int fd)

{tcsetattr(fd,TCSANOW,&oldtio);close(fd);} /* restore the old port settings */

rs232.c: basic RS232 initialization routine needed for all programs running under Linux requiring access to the serial port.

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <string.h> /* declaration of bzero() */

#include <fcntl.h>

#include <termios.h>

int init_rs232();

void free_rs232();

void sendcmd(int,char*);

struct termios oldtio,newtio;

// #define BAUDRATE B9600

// #define BAUDRATE B19200

#define HC11DEVICE "/dev/ttyS0"

rs232.h: header for the basic RS232 initialization routines.

// test hardware: make a diode blink from monitor (MON) mode

#include "hc08.h"

void hc08_test(int fd)

{char lo,hi;

lo=0x56; hi=0; read_hc08(fd,hi,lo);

lo=0x57; hi=0; read_hc08(fd,hi,lo);

lo=0x58; hi=0; read_hc08(fd,hi,lo);

lo=0x56; hi=0; read_hc08(fd,hi,lo);iread_hc08(fd);

lo=0x57; hi=0; writ_hc08(fd,hi,lo,0xaa);

lo=0x58; hi=0; writ_hc08(fd,hi,lo,0x55);

lo=0x56; hi=0; read_hc08(fd,hi,lo);iread_hc08(fd);

iwrit_hc08(fd,0x32);

lo=0x59; hi=0; read_hc08(fd,hi,lo);

readsp_hc08(fd);

lo=0x07; hi=0; writ_hc08(fd,hi,lo,0xFF);

while(1) {

lo=0x03; hi=0; writ_hc08(fd,hi,lo,0xFF);

sleep(1);

lo=0x03; hi=0; writ_hc08(fd,hi,lo,0x00);

sleep(1);

}

}

void hc08_prg(int fd)

{char lo,hi;

lo=0x00; hi=0x01; writ_hc08(fd,hi,lo,0x00);

iwrit_hc08(fd,0x32);

readsp_hc08(fd);

}

int main(int argc,char **argv)

{int fd;

fd=init_rs232(B9600);

init_hc08mon(fd);free_rs232();

fd=init_rs232(B9600);// forget the 10 stop bits

hc08_test(fd);

free_rs232();

}

Test programming for controlling the blinking of an LED connected to port D pin 0/1 (20 pin DIP package) controlled from a Linux

running PC.

Once we have checked the basic circuitry around the microcontroller is operating properly, we can go on to the next step
of performing the same task (blinking an LED) from a program stored on board the microcontroller. The slight additional
difficulty is to figure out how to setup the memory in the microcontroller before sending a RUN command to the monitor. I
found the answer in a comment to spgmr08, in mongp32.c (comment to the routine mon runpc()): after asking the monitor
the current position of the stack pointer (SP), we simply store in SP+4 the high byte of our program’s starting address
and in SP+5 the lower byte of our program’s starting address. Since I have decided to store my program in the beginning
of RAM space which starts at 0x0040, (SP+4)=0x00 and (SP+5)=0x40 in my case. After reset, the monitor mode defines
the stack pointer to be located at 0x00FF, and uses a few bytes so that just before executing the RUN command, SP always
appears to be equal to 0x00FA (=250d).

3.1 Storing and executing a program from RAM

2

#include "hc08.h"

void hc08_prg(FILE *f,int fd)

{char lo,hi;int i=0,j,status;

fscanf(f,"%x",&j); lo=0x40; hi=0; writ_hc08(fd,hi,lo,(char)j);

do {DEBUG(" -- %x \n",ctoi(j));status=fscanf(f,"%x",&j);

iwrit_hc08(fd,(char)j);i++;} /* read while !EOF */

while (status!=EOF);

DEBUG (" -- %x \n",ctoi(j));printf(" %d bytes sent\n",i);

/* setup stack for RUN : read SP, store PC in SP+4 (lo) and SP+5 (hi) */

j=readsp_hc08(fd); DEBUG(" -- SP=%d\n",j);

lo=((j+5)&0xff);hi=(((j+5)>>8)&0xff);writ_hc08(fd,hi,lo,0x40); // PC LO

lo=((j+4)&0xff);hi=(((j+4)>>8)&0xff);writ_hc08(fd,hi,lo,0x00); // PC HI

run_hc08(fd);

DEBUG("\n RUN executed \n");

}

int main(int argc,char **argv)

{int fd;FILE *f;

if (argc<2) {printf("%s filename\n",argv[0]);} else {

fd=init_rs232();

init_hc08mon(fd);free_rs232();fd=init_rs232();// forget the 10 stop bits

f=fopen(argv[1],"r");

hc08_prg(f,fd);

fclose(f);

free_rs232();

} return(0);

}

Store a program in RAM (address 0x0040) and execute it.

start: ldhx #0x0140 ; TXS : (SP)<-(H:X)-1 => STACK=0x013f

txs ; reset stack pointer

; mov #0x01,CONFIG1 ; disable COP watchdog, CONFIG1=0x001f

clra ; clear accumulator

mov #0x0f,0x0007 ; DDRD: port D as output

loop: eor #0x0f ; toggle diode

sta 0x0003 ; store accumulator on PortD

bsr delay

bra loop

delay: psha

pshx

clrx ; 256*0,9375ms=240ms

loopx: clra ; 9*256=2304 (0,9375ms @ 2,4576MHz)

loopa: nsa ; [3]

nsa ; [3]

dbnza loopa ; [3]

dbnzx loopx ;

pulx

pula

rts

blink.asm: sample program for blinking a LED connected to PTD0/1.

The limitation of this programming method is quickly obvious: since the default location of the stack pointer (SP) is
0x00FF, the RAM is cut in two halves (0x0040 to 0x00FA approximately, and 0x00FF to 0x013F) which only allows uploading
to the microcontroller programs 186 and 64 bytes long respectively (depending whether we store the program below or above
the stack pointer). Since our aim is USB development and the sample (short) program from Motorola already needs 1.8 KB,
being able to store the code to flash memory and execute it from there seems mandatory. Our next steps will thus be to
develop a software UART (since the 68HC908JB8 does not include an hardware UART) so we can receive new data from
our own programs, and then to learn how to store data (the new program we want to save) in flash memory.. This way, we
will be able to test programs up to 8 KB long, which should be enough to get us started with USB development.

4 Asynchronous communication (software emulation)

First, we wish to transmit characters from the microcontroller to the PC.

start: ldhx #0x0140 ; TXS : (SP)<-(H:X)-1 => STACK=0x013f

txs ; reset stack pointer

; mov #0x01,CONFIG1 ; disable COP watchdog, CONFIG1=0x001f

mov #0x00,0x0003 ; PTD0/1 lo => LED lit

mov #0x03,0x0007 ; DDRD: PTD0/1 as output

mov #0x01,0x0000 ; PTA: PTA0 hi

mov #0x01,0x0004 ; DDRA: PTA0 as output

ldx #0h00

loop: incx ; increment counter

txa

bsr send ; send value of counter to serial port

bra loop

send: pshx

ldx #0x08 ; snd through PTA0 the content of Acc (@9600)

mov #0x00,0x0000 ; PTA: PTA0 lo : START bit

looprs: bsr delay ; X

bsr delay ; X

rora ; 1 rotate right Acc through carry

bcc bit0 ; 3 branch if carry is clear (is A&1=0)

mov #0x01,0x0000 ; 4 PTA0=hi

bra bit1 ; 3

bit0: mov #0x00,0x0000 ; 4 PTA0=lo

bit1: dbnzx looprs ; 3 --> sum=11 or 14

fin: bsr delay

bsr delay

mov #0x01,0x0000 ; PTA: PTA0 hi : STOP bit

bsr delay

bsr delay

pulx

rts

delay: pshx ; 2+4 for bsr (12+2*((X*9)+15))*.3333=833

ldx #0h0f ; 3 104

loopx: nsa ; 3 => Xinit=0x88 for 1200

nsa ; 3 =0x0f for 9600

dbnzx loopx ; 3

pulx ; 2

rts ; 4

rs snd.asm: sample program for sending the values of a free running counter to the serial port. The baud rate is defined by the delay

value in the function delay (0x88 for 1200 baud, 0x0f for 9600 baud communication).

#include "rs232.h"

void read_osc(int fd)

{unsigned char buf;

while (1) {read(fd,&buf,1);

printf ("%u($%x) \n",buf&0x000000FF,buf&0x000000FF);

fflush(stdout);}

}

void main(int argc,char **argv)

{int fd;

fd=init_rs232();

read_osc(fd);

free_rs232();

}

hc08rec.c: sample program for reading the values on the RS232 port and displaying their decimal and hexadecimal values.

3

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450 500

"9600bps.dat"
"1200bps.dat"

Result of transmitting the values of a free running counter (increasing) at 1200 (green) and 9600 (red) bauds. All data were correctly

transmitted from the microcontroller running the software UART to the PC.

Now that we understand how to transmit arbitrary values from the microcontroller to the PC, we also want the micro-
controller to be able to read values from the serial port and process them (for example add 3 and send the result back).

start: ldhx #0x0140 ; TXS : (SP)<-(H:X)-1 => STACK=0x013f

txs ; reset stack pointer

; mov #0x01,CONFIG1 ; disable COP watchdog, CONFIG1=0x001f

mov #0x00,0x0003 ; PTD0/1 lo => LED lit

mov #0x03,0x0007 ; DDRD: PTD0/1 as output

; ldx #0h00

loop: mov #0x00,0x0004 ; DDRA: PTA0 as output

bsr rcv

; incx ; increment counter

; txa

inca

inca

inca

mov #0x01,0x0000 ; PTA: PTA0 hi (in order to avoid glitches)

mov #0x01,0x0004 ; DDRA: PTA0 as output

bsr send ; send value of counter to serial port

bra loop

send: pshx

ldx #0x08 ; snd through PTA0 the content of Acc (@9600)

mov #0x00,0x0000 ; PTA: PTA0 lo : START bit

loopsn: bsr delay ; X

bsr delay ; X

rora ; 1 rotate right Acc through carry

bcc bit0 ; 3 branch if carry is clear (is A&1=0)

mov #0x01,0x0000 ; 4 PTA0=hi

bra bit1 ; 3

bit0: mov #0x00,0x0000 ; 4 PTA0=lo

bit1: dbnzx loopsn ; 3 --> sum=11 or 14 cycles

fin: bsr delay

bsr delay

mov #0x01,0x0000 ; PTA: PTA0 hi : STOP bit

bsr delay

bsr delay

pulx

rts

rcv: lda #0x80

rcvst: brset #0,*0x0000,rcvst; wait for START bit

; mov #0x03,0x0003 ; START bit => switch LED off (debug)

bsr delay ; wait half a bit width

looprc: bsr delay ; X

bsr delay ; X

brclr #0,*0x0000,rcv0 ; 5 branch if bit is clr => branch if 0, C=bit

rcv0: rora ; 1 after 8 ror, carry=1

; 2 uses of carry bit in these 2 lines: brclr sets the carry bit to the bit

; value, and we use the output of rora to the carry bit to check if we rotated

; 8 times already ...

bcc looprc ; 3 --> sum=8 or 11 cycles

bsr delay

bsr delay ; wait for stop bit

rts

delay: pshx ; 2+4 for bsr (12+2*((X*9)+15))*.3333=833

ldx #0h0f ; 3 104

loopx: nsa ; 3 => Xinit=0x88 for 1200

nsa ; 3 =0x0f for 9600

dbnzx loopx ; 3

pulx ; 2

rts ; 4

rs rcsn.asm: sample program for reading values on the RS232 port, adding 3 to them and sending them back.

#include "rs232.h"

void read_osc(int fd)

{unsigned char buf,cpt=10;

while (1) {buf=cpt;write(fd,&buf,1);

cpt++;

printf ("%u($%x) -> ",buf&0x000000FF,buf&0x000000FF);

// read(fd,&buf,1);

// printf ("%u($%x) ",buf&0x000000FF,buf&0x000000FF);

read(fd,&buf,1);

printf ("%u($%x) \n",buf&0x000000FF,buf&0x000000FF);

fflush(stdout);}

}

void main(int argc,char **argv)

{int fd;

fd=init_rs232();

read_osc(fd);

free_rs232();

}

hc08sndrec.c: accompanying C program for testing rs rcsn. This program sends values to the microcontroller and reads the

processed result.

5 Storing a program in flash memory and execution

Flash memory starts at address 0xDC00. The limitation for the flash memory programmer is as follows:
it must be stored in RAM between locations 0x8C (since RAM space from 0x40 to 0x8B is used by the flash programmer
provided in ROM of the 68HC08JB8) and 0xF9 (since that is the lowest address accessed by the stack in monitor mode).
Hence, the flash programmer cannot be longer than 0x8C-0xF9=109 bytes.

Due to this limitation, we strip our flash programmer to the bare minimum: no character is sent from the microcontroller
to the PC during the programming step (so the UART transmit emulation can be removed). This limitation removes the
ability to echo the received bytes in order to confirm what is happening on the microcontroller side.

4

ldhx #0x0140 ; TXS : (SP)<-(H:X)-1 => STACK=0x013f

txs ; reset stack pointer

; mov #0x01,CONFIG1 ; disable COP watchdog, CONFIG1=0x001f

mov #0x00,0x0003 ; PTD0/1 lo => LED lit

mov #0x03,0x0007 ; DDRD: PTD0/1 as output

ldhx #0xdc00

start: mov #0x00,0x0004 ; DDRA: PTA0 as input

bsr rcv ; receive bit to be written in A

sta 0x100

bsr flash

lda 0,x

mov #0x01,0x0000 ; PTA: PTA0 hi (in order to avoid glitches)

mov #0x01,0x0004 ; DDRA: PTA0 as output

bsr send

aix #1 ; H:X+=1

bra start

flash: lda #0x01

sta 0xfe08 ; set PGM bit in FLCR

lda 0xfe09 ; read FLBPR

lda #0xff ; REQUIRED

sta 0xfe09 ; read FLBPR ; REQUIRED

sta 0,x ; write to any area of row ***

lda #05

d5us1: dbnza d5us1 ; 3 cycles => 1 us/boucle: 5 us delay

lda #0x9

sta 0xfe08 ; FLCR : PGM bit=1, HVEN=1

lda #0x0a

d5us2: dbnza d5us2 ; 3 cycles => 1 us/boucle: 10 us delay

lda 0x100 ; we have put the datum to be programmed on stack ***

sta 0,x ; ADDRESS TO BE WRITTEN ***

lda #0x14

d5us3: dbnza d5us3 ; 3 cycles => 1 us/boucle: 20 us delay

lda #0x08

sta 0xfe08 ; FLCR : PGM bit=0

lda #0x05

d5us5: dbnza d5us5 ; 3 cycles => 1 us/boucle: 5 us delay

lda #0x00

sta 0xfe08 ; FLCR : HVEN bit=0

lda #0x01

d5us6: dbnza d5us6 ; 3 cycles => 1 us/boucle: 1 us delay

rts

send: pshx

ldx #0x08 ; snd through PTA0 the content of Acc (@9600)

mov #0x00,0x0000 ; PTA: PTA0 lo : START bit

loopsn: bsr delay ; X

bsr delay ; X

rora ; 1 rotate right Acc through carry

bcc bit0 ; 3 branch if carry is clear (is A&1=0)

mov #0x01,0x0000 ; 4 PTA0=hi

bra bit1 ; 3

bit0: mov #0x00,0x0000 ; 4 PTA0=lo

bit1: dbnzx loopsn ; 3 --> sum=11 or 14 cycles

fin: bsr delay

bsr delay

mov #0x01,0x0000 ; PTA: PTA0 hi : STOP bit

bsr delay

bsr delay

pulx

rts

rcv: lda #0x80

rcvst: brset #0,*0x0000,rcvst; wait for START bit

; mov #0x03,0x0003 ; START bit => switch LED off (debug)

bsr delay ; wait half a bit width

looprc: bsr delay ; X

bsr delay ; X

brclr #0,*0x0000,rcv0 ; 5 branch if bit is clr => branch if 0, C=bit

rcv0: rora ; 1 after 8 ror, carry=1

; 2 uses of carry bit in these 2 lines: brclr sets the carry bit to the bit

; value, and we use the output of rora to the carry bit to check if we rotated

; 8 times already ...

bcc looprc ; 3 --> sum=8 or 11 cycles

bsr delay

bsr delay ; wait for stop bit

rts

delay: pshx ; 2+4 for bsr (12+2*((X*9)+15))*.3333=833

ldx #0h0f ; 3 104

loopx: nsa ; 3 => Xinit=0x88 for 1200

nsa ; 3 =0x0f for 9600

dbnzx loopx ; 3

pulx ; 2

rts ; 4

flash write.asm: program to be executed from the 68HC908JB8 RAM for reading values on PTA0 at 9600 bauds and store them in

flash memory (starting at 0xDC00).

start: ldhx #0x0140 ; TXS : (SP)<-(H:X)-1 => STACK=0x013f

txs ; reset stack pointer

; mov #0x01,CONFIG1 ; disable COP watchdog, CONFIG1=0x001f

mov #0x00,0x0003 ; PTD0/1 lo => LED lit

mov #0x03,0x0007 ; DDRD: PTD0/1 as output

mov #0x01,0x0000 ; PTA: PTA0 hi (in order to avoid glitches)

mov #0x01,0x0004 ; DDRA: PTA0 as output

lda #0hff

bcl: bsr delay

nsa

nsa

dbnza bcl

ldhx #0hdc00 ; STARTING ADDRESS TO BE READ (fc00 or dc00)

loop: lda 0h00,x

bsr send ; send value of counter to serial port

aix #1 ; increment counter

cphx #0xffff

bne loop

end: bra end

send: pshx

ldx #0x08 ; snd through PTA0 the content of Acc (@9600)

mov #0x00,0x0000 ; PTA: PTA0 lo : START bit

loopsn: bsr delay ; X

bsr delay ; X

rora ; 1 rotate right Acc through carry

bcc bit0 ; 3 branch if carry is clear (is A&1=0)

mov #0x01,0x0000 ; 4 PTA0=hi

bra bit1 ; 3

bit0: mov #0x00,0x0000 ; 4 PTA0=lo

bit1: dbnzx loopsn ; 3 --> sum=11 or 14 cycles

fin: bsr delay

bsr delay

mov #0x01,0x0000 ; PTA: PTA0 hi : STOP bit

bsr delay

bsr delay

pulx

rts

delay: pshx ; 2+4 for bsr (12+2*((X*9)+15))*.3333=833

ldx #0h0f ; 3 104

loopx: nsa ; 3 => Xinit=0x88 for 1200

nsa ; 3 =0x0f for 9600

dbnzx loopx ; 3

pulx ; 2

rts ; 4

flash read.asm: program to be executed from the 68HC908JB8 RAM for reading values in the flash memory (from 0xDC00 to

0xFFFF) and send them on PTA0 at 9600 bauds.

ldhx #0x0140 ; TXS : (SP)<-(H:X)-1 => STACK=0x013f

txs ; reset stack pointer

; mov #0x01,CONFIG1 ; disable COP watchdog, CONFIG1=0x001f

mov #0x00,0x0003 ; PTD0/1 lo => LED lit

mov #0x03,0x0007 ; DDRD: PTD0/1 as output

ldhx #0xffe0

start: lda #0x06

sta 0xfe08 ; set ERASE and MASS bit in FLCR

lda 0xfe09 ; read FLBPR

lda #0xff ; REQUIRED

sta 0xfe09 ; read FLBPR ; REQUIRED

sta 0,x ; write to any area of row ***

lda #05

d5us1: dbnza d5us1 ; 3 cycles => 1 us/boucle: 5 us delay

lda #0xe

sta 0xfe08 ; FLCR : ERASE, MASS, HVEN=1

lda #0xfa

d5us2: dbnza d5us2 ; 3 cycles => 1 us/boucle: 250 us delay

lda #0xfa

d5us3: dbnza d5us3 ; 3 cycles => 1 us/boucle: 250 us delay

lda #0xfa

d5us4: dbnza d5us4 ; 3 cycles => 1 us/boucle: 250 us delay

lda #0xfa

d5us5: dbnza d5us5 ; 3 cycles => 1 us/boucle: 250 us delay

lda #0xfa

d5us6: dbnza d5us6 ; 3 cycles => 1 us/boucle: 250 us delay

lda #0xfa

d5us7: dbnza d5us7 ; 3 cycles => 1 us/boucle: 250 us delay

lda #0xfa

d5us8: dbnza d5us8 ; 3 cycles => 1 us/boucle: 250 us delay

lda #0xfa

d5us9: dbnza d5us9 ; 3 cycles => 1 us/boucle: 250 us delay

lda #0xfa

d5usa: dbnza d5usa ; 3 cycles => 1 us/boucle: 250 us delay

lda #0xc

sta 0xfe08 ; FLCR : MASS, HVEN=1, ERASE=0

lda #100

d5usb: dbnza d5usb ; 3 cycles => 1 us/boucle: 100 us delay

lda #0x4

sta 0xfe08 ; FLCR : MASS=1, HVEN=0, ERASE=0

mov #0x03,0x0003 ; PTD0/1 lo => LED lit

end: bra end

flash erase.asm: program to be executed from the 68HC908JB8 RAM for block erasing the whole flash memory (data and interrupt

vector table).

Commands:
in order to erase the memory: ./hc08flash flash erase.out

5

in order to write the program blink.out to flash memory: ./hc08flash flash write.out blink.out
in order to check that the data were properly written: ./hc08flash flash read.out > t, which reads flash and ROM
memories (from 0xDC00 to 0xFFFF) and stores the result in file t (for further verification of the memory content).

Of course these three steps can be automated by being combined in a shell script.
The programs flash write.asm and flash erase.asm do not use the subroutines provided in the ROM of the 68HC908JB8

since I was not able to figure out how to make them work.

6 USB communication

Now that we know how to store a program in flash memory, we can consider testing the sample software provided by Motorola
with its evaluation board. The program is provided both in source format and compiled to an S19 format, usb08.s19. After
converting this S19 file to a raw list of opcodes and data in hexadecimal format (by removing the S1 header and the address
word at the beginning of each line, as well as the checksum byte at the end of each line), we store this program to flash
memory by executing:
hc08 flash flash erase.out in order to clear the flash memory
hc08 flash flash write.out usb08.flash in order to write the new program to flash memory
hc08 flash flash read.out > usb08.dump in order to read the content of the flash memory and check that the new
program is indeed stored there
hc08 flash flash irq.out usb08.irq in order to program the interrupt vector.

flash irq.asm: program to be executed from the 68HC908JB8 RAM for programming the interrupt vector area (0xFFF0-0xFFFD).

For the last step, we have created a short file containing the hexadecimal values to be stored in the interrupt vectors
located in 0xFFF0 to 0xFFFD. We must be careful not to write to 0xFFFE:FFFF or the microcontroller will no longer enter
monitor mode when powered on (flash irq.asm should never write to locations 0xFFFE:FFFF, even if the interrupt vector
for this location is included in the file usb08.irq).

Since we now wrote in the interrupt vectors space, we must adapt the security bytes sent during initialization of the
monitor mode (as done by the function void init hc08mon(int) in the HC08 library hc08.c). We could until now always
send the security bytes 0xFF since the interrupt vectors were never set. However, if we now try to read the content of flash
memory using hc08 flash flash read.out, we end up only reading the same value (0xAD in my case). We must provide
the proper values for the security bytes in order to be able to read the content of flash memory and execute the program
stored there. Indeed, by adapting the function init hc08mon to send the same bytes as the ones read in usb08.irq, we can
again read the content of the flash memory and thus execute it content (by running hc08 flash without argument, which
will automatically call the program starting at 0xDC00, beginning address of the flash memory).

6.1 First USB tests under MS-Windows

Motorola provides with its USB development board a driver and software for controlling their microcontroller. This software
requires a computer running MS Windows98 at least.

Running the demo version of USBIO provided by Thesycon while the board is connected through its USB link to the PC
leads to an “USBIO Installation wizard” which properly lists our microcontroller as
Manufacturer: Thesycon
Descritpion: USBIO Device: VID=0C70 PID=0000 Hardware ID: USB
VID 0C70&PID 0000&REV 0100
after using the driver found in usbio lt.sys.

In the Control Panel/System Properties one can indeed see the USBIO Device with the same VID and PID appear each
time the board is plugged in the USB port (while the Motorola software is running on the microcontroller).

However, when running the demo application provided by Motorola (io08usb.exe) I get the error message “Couldn’t
open port! Please restart application to retry!”. The computer I tried this on was equipped with an Intel 82801AA USB
Universal Host Controller.

6.2 USB development under linux

Our objective was to provide a linux device driver and a user mode application running directly with the microcontroller
USB example provided by MCT. We used the free evaluation version of the ICC compiler under Windows98 to generate the
S19 file out of the C source code. The resulting S19 file was flashed in the HC908JB8 using the linux programming code
following the procedure presented earlier in this document.

6.2.1 The linux (kernel 2.4.x) driver

6

hc08.c: linux kernel 2.4.x driver for communicating with the 68HC908JB8 microcontroller running the example C program provided

by MCT.

6.2.2 The user client

start hc08: shell script for loading the module and generating the (two) appopriate /dev entries for communicating with the

microcontroller (up to two microcontrollers supported). This script is not to be run if devfs is used (ie the devfsd daemon is

running).

hc08 user write: user programm for writing values to the microcontroller. The LED (connected to PTA0/1) should light if 0xff is

sent, and should switch off is 0x00 is sent.

hc08 user read.c: user programm for writing values to the microcontroller and at the same time displaying the status of keys

connected to PTE.

7

	Introduction
	Electronic circuit
	The Monitor mode
	Storing and executing a program from RAM

	Asynchronous communication (software emulation)
	Storing a program in flash memory and execution
	USB communication
	First USB tests under MS-Windows
	USB development under linux
	The linux (kernel 2.4.x) driver
	The user client

